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A determinantal method is employed to provide a rigorous bound on the screening corrections in beta de
cay in the nonrelativistic approximation. Our results suffice to demonstrate that a previous numerical calcu
lation of these corrections is inaccurate. 

1. INTRODUCTION 

IN the preceding paper,1 L. Durand, I I I , has discussed 
some discrepancies which exist among the published 

values of the atomic screening correction to beta-decay 
spectra, and has derived the value of this correction for 
an exactly soluble model of the screened Coulomb po
tential. Here we shall provide a rigorous upper bound on 
the screening correction in the nonrelativistic approxi
mation. We shall employ in our discussion a Fredholm 
determinant method which has been used recently to 
analyze analyticity properties in potential scattering 
theory. I t is hoped that some of the techniques and inter
mediate results of our work may prove useful in con
texts other than that considered here. 

We shall assume that the screened Coulomb potential 
in which the emitted beta-decay electron moves may be 
represented by a superposition of Yukawa potentials, 

V(r) = (l/r) dMrit F 
J MO 

(1) 

At great distances this potential must closely approxi
mate the pure Coulomb potential of the residual singly 
charged ion. We shall make the not unphysical require
ment that this part of the potential has a large, but 
finite, range characterized by MO-1. This affects only the 
intermediate steps of our calculation, and the limit 
fiQ —» 0 may be taken without difficulty in our result. 
At small distances the potential must approach the 
Coulomb potential of the residual nucleus, 

V (r) = Za/r + cons t+0 (r2), 

with Za a positive or negative quantity according to 
whether we consider positron or electron decay. This 
condition requires that 

J an 

d\x<j(p) = Za. (2) 

I t should be observed that the potential cannot con
tain a term linear in r; for such a term implies that the 
charge density of the screening atomic electrons di
verges as r~l at the nucleus, which is not true. Accord
ingly, the spectral weight a(n) must change sign at 
least once. 

1 L . Durand, III, preceding paper, Phys. Rev. 135, B310 
(1964). 

The nonrelativistic screened Fermi function, $8, is 
the absolute square of the electron wave function 
evaluated at the origin divided by the correspondingly 
normalized quantity for a free electron. In terms of the 
radial 5-state wave function, normalized by the asymp
totic boundary condition 

we have 
u0 (r) —» eih sin(kr+80) , r-^cc 

$s~lim\u0(r)/kr\ 
r-*Q 

(3) 

I t is the ratio of the screened to the pure Coulomb 
value of this function which we shall bound. 

In Ref. 2 it is shown that the limit which we need 
is related to the Jost function fi(k) by 

/ ,(*)-* = lim 
" ui(r) 

.(kr)l+l 
(4) 

and that the Jost function may be written as a Fredholm 
determinant, 

/ ,(£) = D e t [ l - g ; ( £ ) F ] . (5) 

Here Qi(k) is the radial Green's function which satisfies 

[d2 1(1+1) 

Ldr2 r2 
-k2 \Ql(k;r/) = 2m8(r-/), (6) 

and has outgoing wave boundary conditions at infinity, 
or equivalently, is analytic in the upper half k plane. 
We shall initially work with an arbitrary value of the 
angular momentum since it entails no complication and 
gives general results which may prove useful in other 
contexts. 

2. THE COULOMB "JOST FUNCTION" 

We begin our development by obtaining a "Jost 
function" for a pure Coulomb potential. This task will 
illustrate well the techniques we employ and will pro
vide us with some results that will be needed later. 
Since the determinant is invariant under similarity 
transformations, we may replace the kernel gz(&) (Za/r) 

2 L. Brown, D. I. Fivel, B. W. Lee, and R. F. Sawyer, Ann. 
Phys. (N. Y.) 23, 187 (1963). There are, unfortunately, a large 
number of misprints in this paper. The Jost and Green's functions, 
fi(k) and Qiik), used in the present paper are denoted by /z(+)(&) 
and Gz(+)(%) in this reference. 
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occurring in it by the symmetrical form 

Zar-^g^ky-^^r-^lQ^iZa/r^r112. 

I t is advantageous to make use of a further similarity 
transformation 

[/--1/2Sz(&>~1/2] -> e~^[r-^i{k)r-l^~]e^, 

where p is the momentum operator with the con
figuration-space representation p((l/i)(d/dr) when act
ing to the right or p = — (l/i) (dT/dr) when acting to the 
left. On referring to the differential equation (6) satisfied 
by the configuration-space representation of the Green's 
function, we easily conclude on dimensional grounds 
that it is of the form m/k multiplying a function of the 
dimensionless variables kr and kr'. Accordingly, by 
varying <p one may readily verify that 

and 

e~<prpQi(k;r/)e<prp = ei<pQi(k; ei<pr",e*V) 
= e2i^i(ei<pk;r/), 

e-*rv\j-ll2§i{]z)r-lir\e*rv= ei<p[r~ll2Qi(ei(pk)r-112^. 

We shall take <P = TT/2, for in this case we have 

Za\r-1i2Si(k)r-1i*~] -> -iZaKSk), (7) 

where the Coulomb kernel 

£ , ( « ) = - r ^ ' g ^ r - 1 ' 2 (8) 

is a symmetrical, and in fact, a real, positive-definite 
operator. 

The positive imaginary argument ik corresponds to 
negative energy and the bound-state region of the 
Coulomb problem. At certain critical values of the 
potential strength, (Za)'<0, bound states will occur for 
any given negative energy —k2/2m. This implies that 
the integral form of the radial Schrodinger equation 
possesses homogeneous solutions for these critical po
tential strengths, or that its associated Fredholm de
terminant vanishes, 

DetZl+(Za)'Ki(ik)~] = 0. 

Thus, the eigenvalues of Ki(ik) are the reciprocals of 
the set — (Za)', and we may immediately conclude from 
the Balmer formula that they are given by 

Ki(ik)'= (m/^in+l+l),-1 » = 0, 1,- • •. (9) 

The corresponding eigenvectors satisfy 

Ki(ik)4>nti(k)= (m/kXn+l+V-tyn.iik), (10a) 
or 

(n+l+l)(k/mr)lr^<l>ntl(k;r)^ 

--^i{ikyilr"2cj>na{k-r)-] 

= - (l/2m){d2/dr2-l(l+l)/r2~~k2} 

xtV'Vn.K*;')]. (iob) 

The regular solution of this differential equation is 
simply related to the familiar bound-state solution of 
the Coulomb problem, and we have 

l\ 11/2 

[ nl T 
(2kr)l+l 

(2H-1+»)!J 

Xr*'"Ln8 t f l(2*r) , (11) 

where Ln
2l+1(2kr) is a Laguerre polynomial. These 

functions form a complete orthonormal set with the 
inner product 

(n(lk)\n'(lk))= I dr<i>n,l(k;r)<I>n,.,i(k;r) = 8n>nf. (12) i 
A general Fredholm determinant may be written in 

the form 

D e t [ l - X ^ ] = e x p { T r l n [ l - X ^ ] } 

= exp{-£(XsA)Tr^}, (13) 

for sufficiently small values of the parameter X. Thus 
the determinantal definition (5) of the Jost function 
cannot be used for the case of a pure Coulomb potential, 
for here the first trace occurring in the expansion 
diverges. We shall remedy this situation by working 
with a modified determinant in which this trace is 
removed, 

D e t ' [ l - X . 4 ] = e X T ^ D e t [ l - X 4 ] . (14) 

The evaluation of this modified determinant for the 
Coulomb case is easily accomplished by using the se
quence of similarity transformations which brought the 
original kernel into the form —iZaKi(ik) and then com
puting the sum of traces which occurs in exponential of 
the modified version of (13). This sum converges only 
for small values of Za, but we shall obtain a result 
which clearly expresses its analytic continuation for 
arbitrary values of this parameter. According to the 
eigenvalue spectrum (9), the required traces are simply 

TrlK^ik^^im/ky T,(n+l+l)-* 

/my ( - i r / d' 

\k) (s-iy\dL (* - i ) iW inr(/+i). 

The identification of the sum with the sth derivative of 
the logarithm of the gamma function follows from the 
observation that both possess the same singularities 
and both vanish as / —>°o. We thus find 
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D e t ' [ l - g , ( * ) ( Z a / r ) ] 

( oo /iZam\s 1 / d\s 

= exp - L - - l n r ^ + 1 ) 
[ s=2\ k I Sl\dlj 

I / Zam\ 
= exp - l n r n + l + i j 

%/QLYYL 

+ l n r ( / + l ) + ^ ( /+1) 
k 

where 

iP(z)=(d/dz)\nT(z). (15) 

This leads us to define a Coulomb Jost function by 

/ lfO(*) = e x p { - f # t f + l ) } D e t , [ l - g I ( * ) Z a / f ] 

r ( / + i ) (16) 

T(l+l+ir,)' 

where rj= (Zam/k) is the usual Coulomb parameter. 

3. FACTORIZATION OF THE JOST FUNCTION 

We turn now to a discussion of the ratio of the 
screened Jost function to the Coulomb Jost function 
which we have just defined 

Mk) D e t [ l - g i ( * ) 7 ] 

/i«»(A) e x p { - * # ( H - l ) } D e t ' [ l - g ^ ) ( Z a A ) ] 

After rewriting the modified determinant in terms of a 
normal determinant and making use of the fact that the 
ratio of determinants is a determinant of the ratio of 
the operators that they contain, we find 

/,(*) = /,<*>(k) exp{-Tr[ l -g , ( f t ) (Za/r)Tig, (k)V} 
Xex P {TrCl-g , (^) (ZaA)]- iCgK^)(Za/ r ) ] 2 

+irt(l+l)}Rt(k), (17) 
where 

i ? ! ( ^ ) = D e t ' { i - C i - g i ( ^ ) ( z a A ) ] - 1 

.XMlV-(Za/r)l). (18) 

Although the formal procedure outlined to obtain this 
relation is not justified since the first trace of the 
Coulomb kernel diverges, the relation itself is true; for 
it merely expresses a combinatorial relationship among 
well-defined traces. 

We may express the trace which occurs first in Eq. 
(17) as 

T r [ l - S z W ( Z a A ) ] - 1 g z ^ ) F 

= Tr [8z( f t ) - 1 - (Za / r ) ] - iF 

= TrGi'(ft)F, (19) 

where Gf(k) is a Green's function which includes the 
effect of the Coulomb potential. I t satisfies the differen
tial equation 

1 

2m\ 

d* 1(1+1) 

.dr2 

Za 

r 

XG?(k;r/) = 8(r-r'), (20) 

with an outgoing wave boundary condition. I t proves 
useful to write 

TrGi'(k)V= diur(ji)Q,i{ix,k), (21) 

where, on using the previous sequence of similarity 
transformations, we have 

ai{n,k) = - i Tr e-^r. (22) 
l+iZaKt(ik) 

On making further use of this sequence of similarity 
transformation we obtain 

with 

Bi(k) = -

i2,(Jfe) = D e t ' [ l - 5 , ( f t ) ] > 

-iKi(ik) 
-(irV(ir)—Za), 

1+iZaKtiik) 

and also, recalling the eigenvalue spectrum (9), 

Trll-gl(k)(Za/r)T-il$l(k)(Z«/r)J+irif(l+n 

1 1 
+t#(H-l) 

(23) 

(24) 

= -V2 £ " 

= irfip{l-\-\-\-i'q). (25) 

The last equality follows from a consideration of the 
singularities and asymptotic behaviour in the variable 
I of the structure which precedes it. 

I t is perhaps well to pause here and collect our results 
by writing 

/«(*)=/« c c )(*) 
Xexp{-TrGi«(k)V+irrt(l+l+ir,)}Ri(k). (26) 

4. BOUNDS ON Ri(k) 

The upper bound on the modified determinant 

| D e t ' [ l - - B ] | < ^ l | B " 2 , 
in which 

2 = T r £ 5 t , (27) 

is fairly well known,2 4 A lower bound on this quantity 
can be obtained with the aid of the inequalities 

| TrAB | <|M HUSH, 
IM/J||<MH ||*||, 

which follow from the Schwartz inequality. For the 

3 J. Schwinger, Phys. Rev. 93, 615 (1954). 
4 F. Smithies, Integral Equations (Cambridge University Press, 

Cambridge, 1958), 
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first inequality implies that for s> 2 

\TTB°\<\\B\\\\B°-% 

and the repeated use of the second yields 

\TrBs\<\\B\\s. 

Hence it follows from the expansion (13) that 

\Bet/ll~B']\>exp{-f:(l/s)\TvBs\} 

> e x p { - E ( l A ) p | | ' > 

> e x p { l n ( l - p * l l ) + l | 5 | | } , 

so long as | |2?| |<1. We may thus bound the remainder 
function occurring in the decomposition of the Jost 
function given in the preceding section by 

[ l - l l ^ z W O e l ^ ^ ^ i K I ^ W I ^ ^ ' ^ ^ ^ 1 1 2 . (28) 

We note that when the norm ||J5j(A)|| is small we have 
the more detailed statement 

1M*) = 1+0( | |£ , (*) | | 2)- (29) 

The bounding of the remainder function is now re
duced to the evaluation of 

!l̂ i(*)ll8=Tr 
Kt(ik)* 

l+iZaKtiik))* 

X \jrV(ir)—Za][—irV(—-ir)—Za~\. (30) 

Since the factor involving the potential is positive 
semidefinite, this norm is at most increased if we neglect 
the positive definite operator (ZaKi(ik))2 occurring in 
the denominator5 

\Bi l< I dfJLidn2<T(ni)cr(ti2) 
J MO 

XTriTz(f*) 2 ( r -*« r - l ) (e*« r - l ) . 

We may exploit the symmetry of this double integral 
and write 

Bi(k)\\2< / <//ZI<W(MIMM2) •I 
where 

X{bi(fj,hk)+bi(n2,k) — 6z0*i— M2, k)} , (31) 

bi(fx,k) = TrKi(ik)2(l-cosfir). (32) 

5 The convergence of this bound requires that | V(ir) \ <r~l as 
r—» oo, which is tantamount to the condition that weight crfa) 
contain no derivatives of the 8 function. This is a somewhat 
stringent condition on the behaviour of the potential in an un-
physical region. It arises from the use of the similarity transforma
tion to rotate k into ik so that the denominator in Eq. (30) becomes 
positive-definite and the kernel K occuring in it may be neglected. 
This procedure appears to be necessary if a simple form of the 
bound is to be obtained. 

Recalling the definition (22), we see that we may write 
this function as 

d 
bifak) = Re { afak) - ®i(0,k)} Za_0. (33) 

d(Za) 

The evaluation of the function &i(n>k) therefore yields 
both the Born term TrGiv(k)V and bounds on the re
mainder function Ri(k). 

5. CALCULATION OF THE COULOMB-BORN 
APPROXIMATION 

We employ the Coulomb basis discussed in Sec. 2. to 
secure 

1 
GLi(fx,k)=— i{m/k)Y^ 

X (»(/*) | r-*"r | »(/*)), (34) 
in which 

\n(lk)) 
. /o 

dr^ni{h\Y)e-i^m(k\r). 

Integrals of this general type may be evaluated in terms 
of hypergeometric functions.6 In our particular case 
the hypergeometric function reduces to a Jacobi 
polynomial Pn

(a'^(z)y and one finds 

(n(lk)\ 

where 

-^r\n(lk)) 

( f 2 \ l+l 

f 2 + l 

f=(2*//*), ? = a r g ( T - H ) > 0 . 

^ * ( « + * + l ) p n ( 0 , 2 l + l ) ( c o s 2 ^ ) 5 (35) 

(36) 

Since the Jacobi polynomials possess a simple generating 
function,7 we may convert the infinite sum into a more 
manageable integral, 

GI(M,A) = 

with 

00 

--—i{m/k)Y. 
n=0 

I dte~in+l+1+ir])t 

Jo 
X(n(lk)\e~^r 

--i(m/kXi)^a+i/t)21 

X / dte«-
Jo 

* = [ ( ! -

-iv)tR-l(R-e-2i<pe-t_ 

-Vo(i-e~4^~0]1/2. 

[»(»)) 

1)2<+1, (37) 

(38) 

This integral representation has the virtue of having 
its dependence on the Coulomb parameter t\ isolated in 
the simple factor e~ivt. Other methods of calculation 
generally lead to integrals with a complicated de-

6 See, for example, L. D. Landau and E. M. Lifshitz Quantum 
Mechanics (Pergamon Press Ltd., London, 1958), p. 505. 

7 The generating function used here is equivalent to that given 
in the Bateman Project Staff, Higher Transcendental Functions 
(McGraw-Hill Book Company, Inc., New York. 1953), Vol. II, 
p. 172. 
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pendence on this parameter, and these integrals are 
correspondingly difficult to evaluate. 

I t is at this point that we specialize our discussion to 
the case Z=0. In this case the integral can be evaluated 
without great algebraic difficulty, for it is related to a 
standard representation8 of the Legendre function of the 
second kind, and one finds 

ao(ji9k) = - (int/2k){i/ri+e-2<pri 
XlQiv-i(cos2cp+ie)+Qiv(cos2<p+ie)']}. (39) 

The argument of the Legendre function is in the region 
of its cut. The ie indicates that this cut is to be ap
proached from above. I t is the real part of do that enters 
into the Fermi function and also into the bound which 
was developed previously. This real part may be com
puted with the aid of various relations among Legendre 
functions9 with the result : 

m 
Rea0(fx,k) = {l/77+e-2^7r(coth7D7+1) 

2k 

Xi[P*(cos2?)+P_*(cos2?) ]} . (40) 

The derivative of this function with respect to Za, 
evaluated at Za=0, is related to the bounding function 
h. This derivative may be obtained by expressing the 
Legendre function P^iz) in terms of a hypergeometric 
function.9 The resulting terms contain logarithms and 
an Euler dilogarithm. They can be expressed succinctly 
by the integral 

b0(fi,k) = (ni*/2k*) 

X / ^ ( X 2 + 1 ) - 1 [ 2 T T - 4 arctamf], (41) 
Jo 

0<h(fx,k)<(m2/2k2)\fx/k\T. 

We may bound the double integral (31) by 

llSo(£)| |2<2/ <frikGii)|./ rfM»kOia)ll*oO*i,*) 
J no J no 

+ b0(lJ,2,k) — bo(fjLi — }JL2y k) | . 
Since 

(a/d/*)&oG*,ft)>o, 

within the integration range bo(/Jii—\x^ k) decreases 
with fjL2 and is thus always smaller than boQiijk). Ac
cordingly, the bound increases with the neglect of 

8 Bateman Project Staff, Higher Transcendental Functions 
(McGraw-Hill Book Company, Inc., New York, 1953), Vol. I, 
p. 160, Eq. (32). There are two misprints in this formula. The 
curly brackets should be raised to the power —ju—1/2, and the 
term (z2—1) occurring inside these brackets should be replaced 
by(z 2 - l ) 1 / 2 . 

9 Such formulas may be found in Ref. 8, Chap. III. There is 
another misprint in this reference. A minus sign should appear on 
the right of Eq. (8), p. 144. 

bo(m—M2, k), and we secure the simple result 

\\B0(k)\\*<2 4u ik(Mi) l / <*MkG**)l*o(M,*) 
J PQ J MO 

/»00 /.CO 

< Ttn2k~* I dm | o-(jui) I / dfjL2{JL21 o- (M2) I • (42) 
J MO J MO 

If the weight c-(^) does not change sign we may write 
this bound as 

||3o(*)||'<iK*»>/*, (43) 
in which 

/.00 

( M )= (Z«) - 1 / rfw«rO«) = l i m [ f - 1 - ( Z o ) - 1 F ( f ) ] . (44) 
/ r-»0 

J MO 

The remarkably simple structure of this bound, which 
depends only on the behaviour of the potential at the 
origin, is a consequence of the analyticity of the poten
tial which we have assumed. 

6. DISCUSSION 

The bound ||5o(&) ||2 is quite small for light to medium 
weight nuclei and for moderate energies of the emitted 
beta particle, energies of the order of a few hundred 
kilovolts. Although such energies exceed the range in 
which the nonrelativistic approximation is accurate, 
relativistic corrections will not alter very greatly the 
magnitude of the screening corrections themselves. A 
quantitative estimate of the bound may be obtained by 
fitting the Hartree potential function of various atoms 
by a discrete sum of Yukawa potentials. Such a fit has 
been performed by Byatt.10 His results give various 
averaged inverse-range parameters that all lie close to 
the value 

</K>=1.5Z1'»<m, (45) 

in agreement with the estimate of Durand.1 In many 
cases he obtained an accurate fit with a sum of terms of 
the same sign, and in these cases the very simple formula 
(43) can be applied. For the other cases in which terms 
of differing sign occur, one finds from Byatt 's work that 
(43) differs at most by 30% from the correct value 
given by (42). As a specific example, we note that for 
an energy of 200 keV and with Z = 1 6 , Eqs. (43) and 
(45) give 

||£o(£)||2< 2X10- 3 . 

10 W. J. Byatt, Phys. Rev. 104, 1298 (1956). Our discussion is 
simplified by the neglect of the long-range Coulomb potential of 
the residual ion. The inclusion of this potential modifies our results 
by at most 10%. We should also note that Byatt's potentials 
contain a term proportional to r and hence violate the general 
considerations given in the Introduction on the behaviour of the 
correct potential near the origin. Moreover, they do not possess 
the correct behaviour at infinity. However, the difference between 
the true atomic* screening potential and that given by a model 
such as Byatt's can be made very small, the major relative error 
occurring in a region where the potential is itself quite small. 
These very small differences will have little effect on the value of 
the wave function at the origin, and we may employ the model 
potential in our calculations even though it violates some general 
requirements. 
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Thus, for the conditions considered here, the remain
der function Ro(k) can differ from unity by at most a 
few tenths of a percent, and within this accuracy we 
may use 

/o(*) = /o(C)(*) exp{-TrG0 ' (ft)F+i#(/+l+fi7)}, 

or 

= 5e exp{ (irrf(y)/k)[cota.nh.icri-1r 1]}. (46) 

Here $c is the Fermi function of a pure Coulomb 
potential, 

9 :c=|r(l+fi7)|2«r", (47) 

and we have retained only terms to order ju in an ex
pansion of the function Re Cfco (/*,&) which determines 
ReTrGo^F. As an illustration of the order of the screen
ing corrections, and to compare our results with the 
numerical calculation of Reitz,11 we consider again the 
example of £=200 keV, Z= 16. In this case12 

t J s / " c — 

j 1+7X10-3(1+38X10-3), positron decay 

Il-3X10-3(1+0X10~S), electron decay. 
11 J. R. Reitz, Phys. Rev. 77, 10 (1950). 
12 It must be noted that these values are of the same order as 

that of the error bound ||2?0(&)||2. Indeed, the correction terms 

The parenthesis enclose the corresponding values found 
by Reitz. His value for the positron-decay correction dis
agrees quite strongly with ours. We also note that, to 
within terms of order {(ix)/k)2, we may write our result 
(46) for the Fermi function as 

£F.= (* / /*)SF/ , (48) 

where &e' is the pure Coulomb Fermi function evalu
ated at the shifted energy E'' = E+Za(ji), and kf is the 
wave number corresponding to this shifted energy. 
This form agrees with the WKB result of Rose.13 
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in (46) and ||#o(&)||2 are both of order (p)/k. However, an inspec
tion of the determinantal representation of the remainder function 
Ro(k) of Eq. (23) shows that its absolute value is not of order 
{fi)/k as indicated by the bound \\B0(k) ||2, but rather of the smaller 
order ((tx)/k)2. The reason for this discrepancy is that ||^oW||2 

gives essentially a bound on the logarithm of Ro(k), and Ro(k) has 
a large phase of order (ji)/k. 

13 M. E. Rose, Phys. Rev. 49, 727 (1936). 
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Empirical Screening Correction for M-Subshell Internal Conversion Coefficients55 
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The only theoretical values which are available for coefficients of internal conversion in the M shell have 
been calculated without the inclusion of screening, and they are in disagreement with experimental values by 
factors as large as 3. From the comparison of these theoretical values with new accurate measurements on the 
Jkf-subshell electron lines of the M4 transitions occuring in the decay of Te121w and of Te123w,itwas possible to 
effect a tentative semiempirical screening correction. Essentially, this is the replacement of the nuclear 
charge Z for the evaluation of the coefficient by Zefm=Z—ai, where o-* = 7.0, 7.9, and 10.0 for Mi (3s), Mu, in 
(Sp), and Miv.v (3d) electrons, respectively. This correction to the theoretical values is found to produce 
agreement with other experimental M conversion results, both measured in this work and taken from the 
literature, over a wide range of multipolarities and of Z and energy values. The nonspecific characteristic of 
the correction is interpreted to mean that the screening is chiefly an effect on the electron wave functions of 
the initial bound states of the atom. 

I. INTRODUCTION 

IT has been recognized that experimentally deter
mined values of internal conversion coefficients in 

the M levels are considerably smaller than the theoret
ical values now available.1 For simplicity, two effects 
included in the later theoretical work on K and L shell 

* Research performed under the auspices of the U. S. Atomic 
Energy Commission. 

1 M. E. Rose, Internal Conversion Coefficients (North-Holland 
Publishing Company, Amsterdam, 1958). 

conversion coefficients1,2 were neglected in the M-shell 
calculations. The first of these, the effect of finite nuclear 
size, was thought to be of little importance in most 
cases; it was recognized that the second effect, the 
screening of the M electrons from the nuclear charge 
by the other electrons in the atom could produce 

2 L. A. Sliv and A. M. Band, Academy of Sciences of the 
U.S.S.R., Coefficients of Internal Conversion of Gamma Radiation 
(English transl.: Physics Department, University of Illinois, 
Urbana, Reports 57 ICC Kl and 58 ICC LI, 1957 and 1958). 


